
Lección 4.3

Ángulos de Referenciay Gráficas de Funciones Trigonométricas

Actividades

Referencia Texto:

Sección 6.3: 1- 4

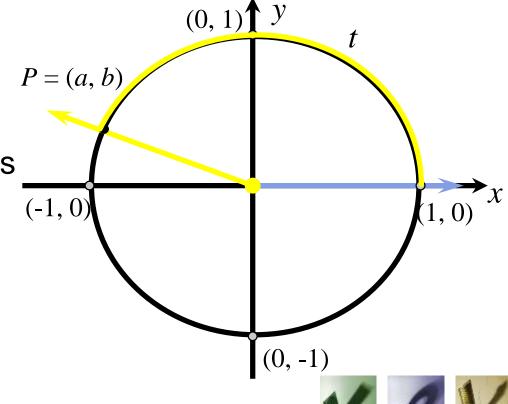
Sección 6.4: 1-24;37 y 38

Sección 7.2: 1-6, 19-32

Referencias del Web:

- Videos
 - Ángulos Coterminales
 - Gráficas de las Funciones Trigonométricas
 - Gráficas de las Funciones Trigonométricas 2 (Seno)
 - Frecuencia de una función seno y coseno

CÁLCULO DE VALORES TRIGONOMÉTRICOS


Funciones Circulares de Ángulos

 Sea t un número real y P = (a, b) un punto en el círculo unitario asociado a t. Entonces:

(coseno)
$$\cos t = a$$

(seno) $\sin t = b$
(tangente) $\tan t = \frac{b}{a}$

Funciones recíprocas

(secante)
$$\sec t = \frac{1}{a}$$

(cosecante) $\csc t = \frac{1}{b}$
(cotangente) $\cot t = \frac{a}{b}$

- Sea $\left(\frac{1}{4}, \frac{-\sqrt{15}}{4}\right)$ un punto en el círculo unitario asociado a un número real t. Determine los valores trigonométricos de t si:
- Solución:

$$\cos t = \frac{1}{4}$$

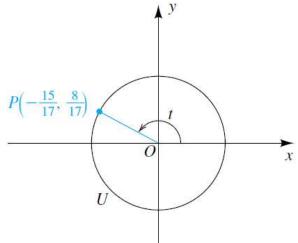
$$\sin t = -\frac{\sqrt{15}}{4}$$

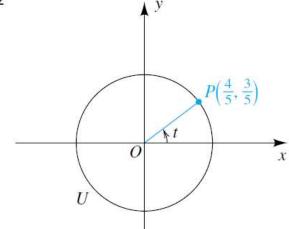
$$\tan t = \frac{b}{a} = \frac{-\sqrt{15/4}}{\sqrt{4}} = -\sqrt{15} \quad \cot t = \frac{a}{b} = \frac{\sqrt{14/4}}{-\sqrt{15/4}} = -\frac{1}{\sqrt{15/4}}$$

$$\sec t = \frac{1}{a} = \frac{1}{\frac{1}{4}} = 4$$

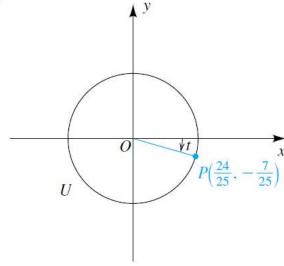
$$\csc t = \frac{1}{b} = \frac{1}{-\sqrt{15}/4} = -\frac{4}{\sqrt{15}}$$

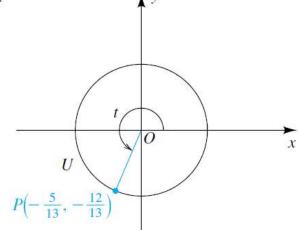
$$\cot t = \frac{a}{b} = \frac{\frac{1}{4}}{-\sqrt{15}/4} = -\frac{1}{\sqrt{15}}$$




Ejercicios del Texto 6.1

Ejer. 1–4: Un punto P(x, y) se muestra en la circunferencia unitaria U correspondiente a un número real t. Encuentre los valores de las funciones trigonométricas en t.




2

3

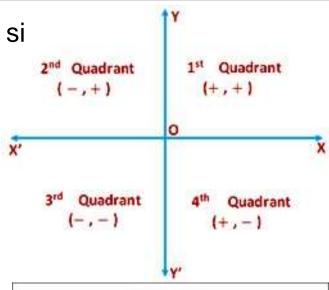
4

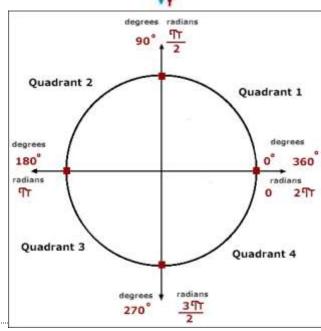
- Encuentre los signos de sin t, cos t, tan t si el lado terminal del ángulo se encuentra en el cuadrante IV.
- Solución:

$$\cos t > 0$$

$$\sin t < 0$$

b) Encuentre el signo de sin 285°.

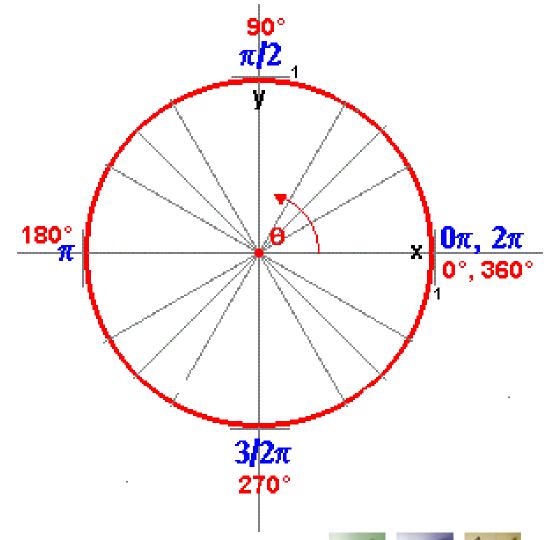

$$\sin 285^{\circ} < 0$$


c) Encuentre el signo de $\tan \frac{7\pi}{6}$.

$$\tan\frac{7\pi}{6} > 0$$

d) Encuentre el signo de cos 2.

$$\cos 2 < 0$$

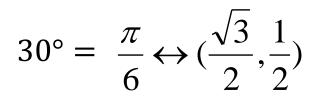

Relaciones especiales para recordar

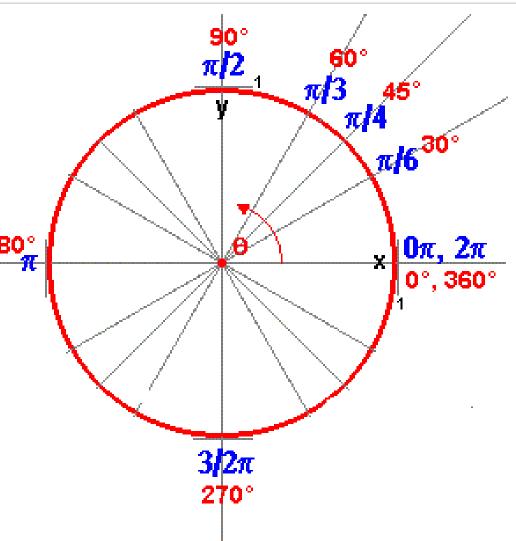
$$90^{\circ} = \frac{\pi}{2} \leftrightarrow (0,1)$$

$$180^{\circ} = \pi \leftrightarrow (-1,0)$$

$$270^{\circ} = \frac{3\pi}{2} \leftrightarrow (0,-1)$$

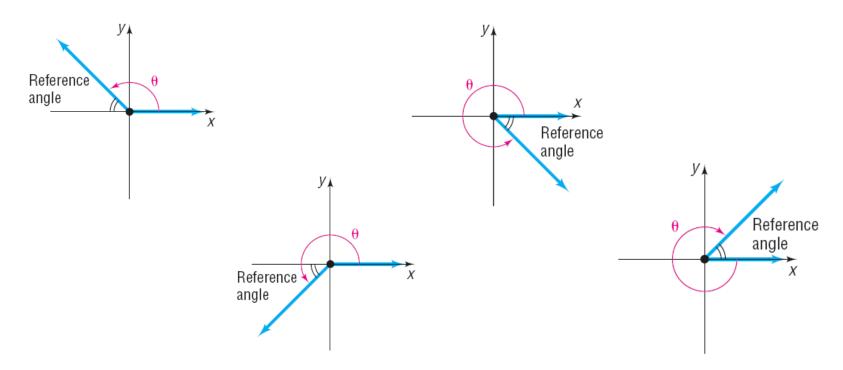
$$360^{\circ} = 2\pi \leftrightarrow (1,0)$$





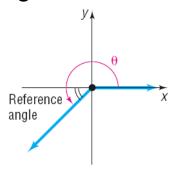
Relaciones especiales para recordar

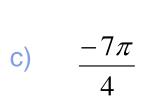
$$45^{\circ} = \frac{\pi}{4} \leftrightarrow \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \xrightarrow{180^{\circ}}$$

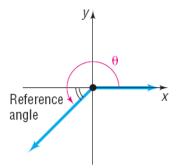

$$60^{\circ} = \frac{\pi}{3} \leftrightarrow (\frac{1}{2}, \frac{\sqrt{3}}{2})$$

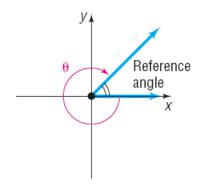
ÁNGULOS DE REFERENCIA

Sea θ un ángulo en posición estándar. El ángulo de referencia es el ángulo positivo **agudo** formado por entre su lado terminal y el eje de x.




Encuentre el ángulo de referencia de:


a) 210°


$$\theta = 210^{\circ} - 180^{\circ} = 30^{\circ}$$

b) $\frac{4\pi}{3}$

$$\theta = \frac{4\pi}{3} - \pi = \frac{4\pi}{3} - \frac{3\pi}{3} = \frac{\pi}{3}$$

$$\theta = 2\pi - \frac{7\pi}{4} = \frac{8\pi}{4} - \frac{7\pi}{4} = \frac{\pi}{4}$$

Ejercicios del Texto 6.4

Ejer. 1–6: Encuentre el ángulo de referencia θ_R si θ tiene la medida dada.

(b)
$$260^{\circ}$$
 (c) -235° (d) -660°

(d)
$$-660^{\circ}$$

2 (a)
$$290^{\circ}$$
 (b) 195° (c) -185° (d) 400°

3 (a)
$$3\pi/4$$
 (b) $4\pi/3$ (c) $-\pi/6$ (d) $9\pi/4$

(b)
$$4\pi/3$$

(c)
$$-\pi/6$$

(d)
$$9\pi/4$$

4 (a)
$$7\pi/4$$

(b)
$$2\pi/3$$

(c)
$$-3\pi/4$$

4 (a)
$$7\pi/4$$
 (b) $2\pi/3$ (c) $-3\pi/4$ (d) $-23\pi/6$

(b)
$$-2$$
 (c) 5.5

(b)
$$-4$$
 (c) 4.5

Ejercicios del Texto 6.4

Ejer. 7–18: Encuentre el valor exacto.

7 (a) sen
$$(2\pi/3)$$
 (b) sen $(-5\pi/4)$

8 (a) sen
$$210^{\circ}$$
 (b) sen (-315°)

9 (a)
$$\cos 150^{\circ}$$
 (b) $\cos (-60^{\circ})$

10 (a)
$$\cos (5\pi/4)$$
 (b) $\cos (-11\pi/6)$

11 (a)
$$\tan (5\pi/6)$$
 (b) $\tan (-\pi/3)$

12 (a)
$$\tan 330^{\circ}$$
 (b) $\tan (-225^{\circ})$

13 (a)
$$\cot 120^{\circ}$$
 (b) $\cot (-150^{\circ})$

14 (a)
$$\cot (3\pi/4)_{3}$$
 (b) $\cot (-2\pi/3)$

15 (a)
$$\sec (2\pi/3)$$
 (b) $\sec (-\pi/6)$

16 (a)
$$\sec 135^{\circ}$$
 (b) $\sec (-210^{\circ})$

17 (a)
$$\csc 240^{\circ}$$
 (b) $\csc (-330^{\circ})$

18 (a)
$$\csc (3\pi/4)$$
 (b) $\csc (-2\pi/3)$

Ejer. 19–24: Calcule a tres lugares decimales.

(b) cos 0.68

(b) cot 1.13

$$x = 0.45$$

$$\sin x = 0.45$$

$$2x - 1 = 0$$

$$2 \sin 3x - 1 = 0$$

$$x^2 - 5x + 6 = 0$$

$$tan^2x - 5\tan x + 6 = 0$$

ECUACIONES TRIGONOMÉTRICAS

... Es una ecuación entre dos expresiones que contienen valores trigonométricos ...

- Determine $sin^{-1}\left(\frac{1}{2}\right)$
- Como

$$\frac{\pi}{6} \leftrightarrow \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

• Entonces
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

• Y
$$\sin^{-1}\left(\frac{1}{2}\right) \approx \frac{\pi}{6}$$

En su calculadora:

$$[2nd][sin]1\left[\frac{n}{d}\right]2) = [<>]$$

Determine $sin^{-1}(0.542)$

En su calculadora ...

$$[2nd][sin]0.542) =$$

$$sin^{-1}(0.542) \approx 0.572815168$$

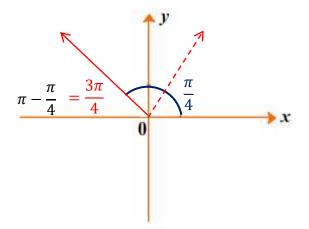
Determine el ángulo en grados tal que

$$sin^{-1}(0.8139)$$

Ajuste modalidad de su calculadora para grados. Luego, ...

$$[2nd][sin]0.8139) =$$

$$sin^{-1}(0.8139) \approx 54.47874114$$

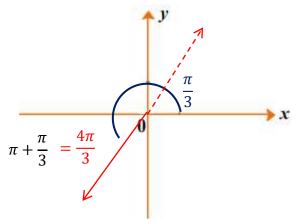


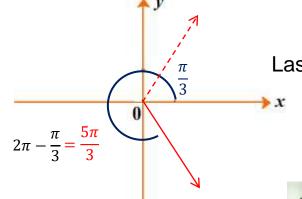
- Resuelva la ecuación en el intervalo $[0,2\pi)$ tal que: $\sin x = \frac{\sqrt{2}}{2}$
- Paso 1 Encuentre el número o ángulo de referencia
- Como $\frac{\pi}{4} \leftrightarrow \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ ó $sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$ $\implies \frac{\pi}{4}$ es el número de referencia.
- Paso 2 Identifique cuadrantes que coinciden con el signo del valor trinométrico

Seno es positivo en el cuadrante I y II,

- Paso 3 Determine soluciones
- Como senos es positivo, la primera solución coincide con el número de referencia: $\frac{\pi}{4}$. El del cuadrante II se calcula así:

Las dos soluciones son: $\frac{\pi}{4}, \frac{3\pi}{4}$




- Resuelva la ecuación en el intervalo $[0,2\pi)$ tal que: $\sin x = -\frac{\sqrt{3}}{2}$
- Paso 1 Encuentre el número o ángulo de referencia (ignore signo)
- Como

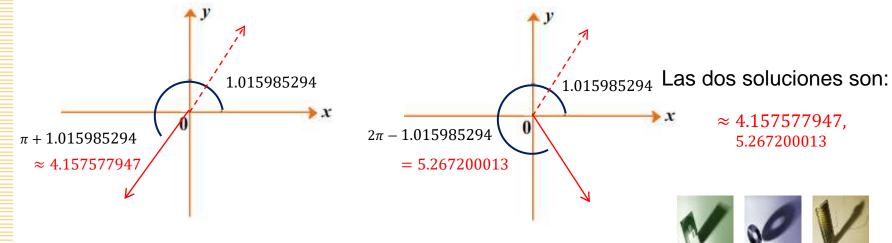
$$\frac{\pi}{3} \leftrightarrow \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 \acute{o} $sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$ \implies $\frac{\pi}{3}$ es el número de referencia.

- Paso 2 Identifique cuadrantes que coinciden con el signo ...
 Seno es negativo en el cuadrante III y IV,
- Paso 3 Determine soluciones

En el cuadrante III se calcula así: En el cuadrante IV se calcula así:

Las dos soluciones son:

$$\frac{4\pi}{3}$$
, $\frac{5\pi}{3}$



- Resuelva la ecuación en el intervalo $[0,2\pi)$ tal que: $\sin x = -0.85$
- Paso 1 Encuentre el número o ángulo de referencia (ignore signo)
- Como

- Paso 2 Identifique cuadrantes que coinciden con el signo ...
 Seno es negativo en el cuadrante III y IV,
- Paso 3 Determinar soluciones

En el cuadrante III se calcula así: En el cuadrante IV se calcula así:

Ejercicios del Texto 7.2

Ejer. 1-42: Hallar todas las soluciones de la ecuación.

1 sen
$$x = -\frac{\sqrt{2}}{2}$$
 2 cos $t = -1$

$$2 \cos t = -1$$

3
$$\tan \theta = \sqrt{3}$$

3
$$\tan \theta = \sqrt{3}$$
 4 $\cot \alpha = -\frac{1}{\sqrt{3}}$

5
$$\sec \beta = 2$$

5
$$\sec \beta = 2$$
 6 $\csc \gamma = \sqrt{2}$

19
$$2\cos t + 1 = 0$$

19
$$2 \cos t + 1 = 0$$
 20 $4 \cos \theta - 2 = 0$

21
$$\sqrt{3} + 2 \operatorname{sen} \beta = 0$$
 22 $2 \cos x = \sqrt{3}$

22
$$2 \cos x = \sqrt{3}$$

23
$$(\cos \theta - 1) \sin \theta = 0$$
 24 $(\sin t - 1) \cos t = 0$

24 (sen
$$t - 1$$
) cos $t = 0$

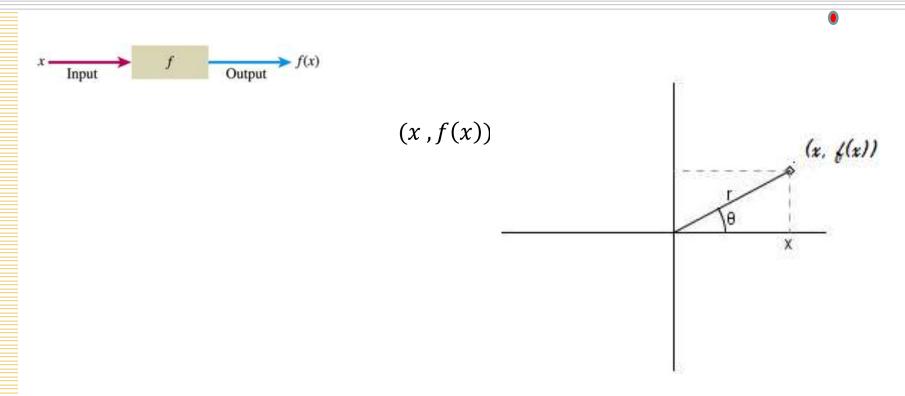
25
$$tan^2 x = 1$$

26
$$\cot^2 \theta - 1 = 0$$

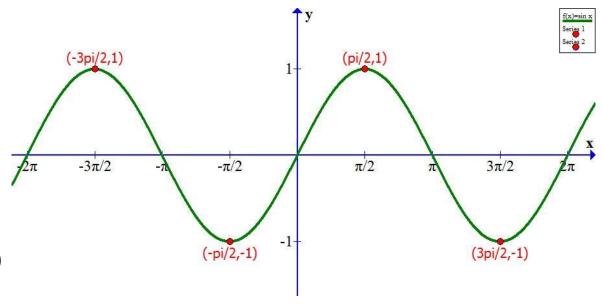
27
$$\sec^2 \alpha - 4 = 0$$

27
$$\sec^2 \alpha - 4 = 0$$
 28 3 $-\tan^2 \beta = 0$

29
$$\cot^2 x - 3 = 0$$


29
$$\cot^2 x - 3 = 0$$
 30 $4 \sin^2 x - 3 = 0$

31
$$(2 \operatorname{sen} \theta + 1)(2 \operatorname{cos} \theta + 3) = 0$$


GRÁFICAS DE LAS FUNCIONES TRIGONOMÉTRICAS SENO Y COSENO

Gráfica de $f(x) = \sin x$

El Dominio es: $(-\infty,\infty)$

El Rango es: $-1 \le x \le 1$

El valor mínimo que puede asumir es: -1

El valor máximo que puede asumir es: 1

La función repite sus valores cada (periodo) 2π

Los interceptos en x ocurren cuando $x = ..., -2\pi, -\pi, 0, \pi, 2\pi, ...$

Gráficas de $y = a \sin x$

El Dominio será: $(-\infty, \infty)$

El rango será: $-a \le x \le a$

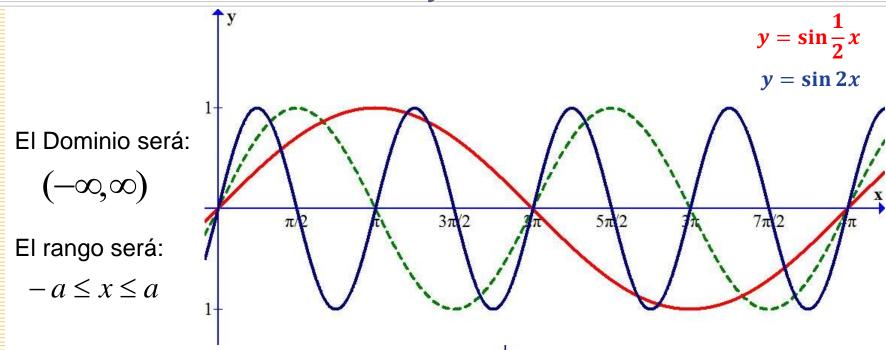
El valor máximo y mínimo que puede asumir son: a - a

Su periodo es: 2π

Los interceptos ocurrirán en:

...,
$$-2\pi$$
, $-\pi$, 0 , π , 2π , ...

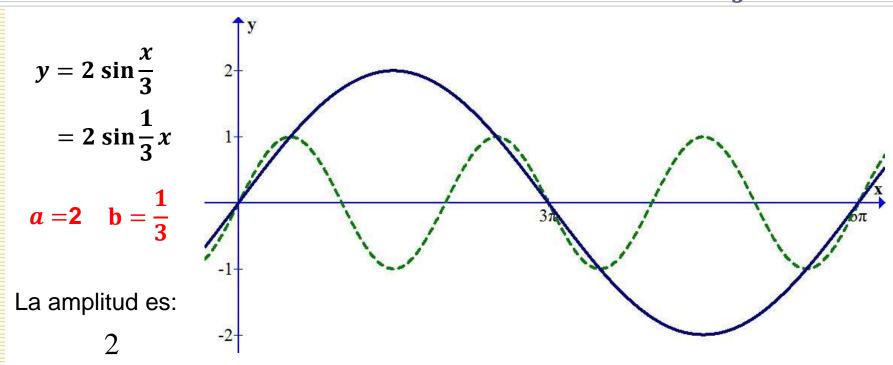
 $y = 3 \sin x$


|a| se conoce como la amplitud de la función y determina el valor máximo y mínimo.

Gráficas de $y = \sin b x$

Los valores máximos y mínimos que puede asumir son: a - a

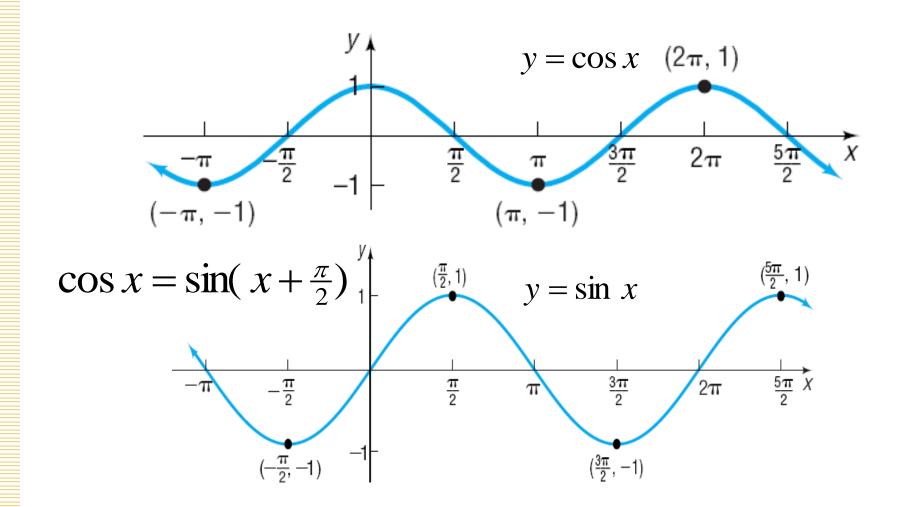
Su periodo es: $\frac{2\pi}{b}$


Los interceptos ocurrirán en: ..., $-\frac{3\pi}{b}$, $-\frac{2\pi}{b}$, $-\frac{\pi}{b}$, 0, $\frac{\pi}{b}$, $\frac{2\pi}{b}$, $\frac{3\pi}{b}$, ...

Ejemplo 1 – Bosqueje gráfica de $y = 2 \sin \frac{x}{3}$

Los valores máximos y mínimos que puede asumir son: 2-2

Su periodo es:
$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{3}} = 6\pi$$


Los interceptos ocurrirán en: ..., 0, $\frac{\pi}{1/3}$, $\frac{2\pi}{1/3}$, ... = ..., 0, 3π , 6π , ...

Gráfica de $y = \cos x$

Ejercicios del Texto 6.5

- 1 Encuentre la amplitud y periodo y trace la gráfica de la ecuación:
 - (a) $y = 4 \operatorname{sen} x$

(b) $y = \sin 4x$

- (c) $y = \frac{1}{4} \sin x$
- (d) $y = \sin \frac{1}{4}x$
- (e) $y = 2 \sin \frac{1}{4}x$
- (f) $y = \frac{1}{2} \sin 4x$
- (g) $y = -4 \sin x$
- (h) y = sen (-4x)
- 2 Para ecuaciones análogas a las de (a)-(h) del ejercicio 1 pero que contengan el coseno, encuentre la amplitud y el periodo y trace la gráfica.
- 3 Encuentre la amplitud y el periodo y trace la gráfica de la ecuación:
 - (a) $y = 3 \cos x$

(b) $y = \cos 3x$

(c) $y = \frac{1}{3} \cos x$

(d) $y = \cos \frac{1}{3}x$

(e) $y = 2 \cos \frac{1}{3}x$

(f) $y = \frac{1}{2} \cos 3x$

(g) $y = -3 \cos x$

(h) $y = \cos(-3x)$

