MATE 3013 - FINAL

Jose Rodriguez Ahumada

Started: November 8, 2011 10:04 AM

Questions: 25

Finish | Save All

Help

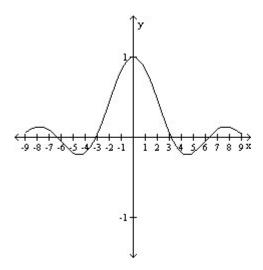
Instructions

Este examen está compuesto de 25 problemas de selección múltiple y llenar el espacio en blanco. Cubre todos los temas tratados en el curso para un valor total de 50 puntos.

1. (Points: 2)

Calcule 72 - (11⁻⁵)

Redondee su resultado a la centésima más cercana. No entre comas ni el signo de dólar.


Answer

Save Answer

2. (Points: 2)

Usa la gráfica para calcular el límite.

$$\lim_{x\to 0} f(x)$$

- O a. 1
- b. 0
- © c. -1

0	d.	No existe

3.(Points: 2)

Encuentre el limite, si existe.

$$\lim_{x\to 2} (x^2 + 8x - 2)$$

- a. 18
- b. No existe
- © c. 0
- 0 d. -18

Save Answer

4.(Points: 2)

Encuentre el limite, si existe.

$$\lim_{x\to 8} (9x + 2)$$

- o a. 11
- b. -70
- © c. 74
- 0 d. 2

Save Answer

5.(Points: 2)

Encuentre la derivada.

$$y = 8 - 7x^3$$

$$\bigcirc$$
 a. 8 - 21 x^2

$$\bigcirc$$
 b. $-14x^2$

$$\circ$$
 c. $-21x^2$

6.(Points: 2)

Calcule la derivada de la función. Entonces, encuentre la derivada en el valor indicado.

$$g(x) = x^3 + 5x$$
; $g'(1)$

$$\bigcirc$$
 a. $g'(x) = 3x^2$; $g'(1) = 3$

b.
$$g'(x) = x^2 + 5; g'(1) = 6$$

$$\circ$$
 c. $g'(x) = 3x^2 + 5$; $g'(1) = 8$

$$\bigcirc$$
 d. g'(x) = 3x² + 5x; g'(1) = 8

Save Answer

7.(Points: 2)

Encuentre la ecuación de la tangente en el punto de la gráfica de la función.

$$y = f(x) = x^2 - x$$
, $(x, y) = (2, 2)$

$$\bigcirc$$
 a. y = 3x - 6

b.
$$y = 3x + 4$$

$$\bigcirc$$
 c. $y = 3x - 4$

$$\bigcirc$$
 d. $y = 3x + 6$

Save Answer

8. (Points: 2)

Encuentre D_xy .

$$y = (1 - 3x^2)(3x^2 - 36)$$

$$\circ$$
 a. $9x^3 + 111x$

$$\circ$$
 b. $-36x^4 + 222x^2$

$$\circ$$
 c. $-36x^3 + 222$

$$\bigcirc$$
 d. $-36x^3 + 222x$

9.(Points: 2)

Encuentre D_xy .

$$y = \frac{x}{6x - 4}$$

$$\circ$$
 a. $-\frac{4}{(6x-4)^2}$

$$\bigcirc$$
 b. $\frac{12x-4}{(6x-4)^2}$

$$\circ$$
 c. $-\frac{4x}{(6x-4)^2}$

$$\bigcirc$$
 d. $-\frac{4}{6x-4}$

Save Answer

10.(Points: 2)

Find D_xy.

$$y = (4x^2 + 5)^5$$

$$\bigcirc$$
 a. $40x(4x^2 + 5)^4$

$$\circ$$
 b. $(40x + 5)(4x^2 + 5)^4$

$$\circ$$
 c. $5(4x^2 + 5)^4$

$$0$$
 d. $40(4x^2 + 5)^4$

11. (Points: 2)

Find D_xy.

$$y = \frac{1}{e^{x^{16}}}$$

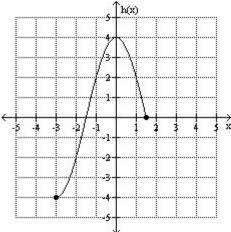
- \bigcirc a. $-\frac{16 \times 15}{e^{\times 16}}$
- o. e^{-16x15}
- \bigcirc d. $\frac{16 \times ^{15}}{e^{\times 16}}$

Save Answer

12.(Points: 2)

Encuentre la derivada de y con respecto a x.

$$y = \ln \frac{1 + \sqrt{x}}{x^4}$$


- \bigcirc b. $\frac{-8 7\sqrt{x}}{2(1 + \sqrt{x})}$
- \bigcirc c. $\frac{8 7\sqrt{x}}{2x(1 + \sqrt{x})}$

Save Answer

13.(Points: 2)

Halle el valor de x en donde la función asume el valor extremo indicado.

Mínimo

- \bigcirc a. x = -3
- \bigcirc b. x = -4
- c. x = 2
- \bigcirc d. x = 0

Save Answer

14.(Points: 2)

Identifique los puntos criticos. Luego decida cuáles puntos criticos determinan un máximo local y cuáles determinan un mínimo local. Indique estos valores.

$$h(x) = 6x^2 - \frac{6}{x}$$

- \bigcirc a. Critical point: 0; local minimum f(0) = 0
- b. Critical point: $\frac{-\sqrt[3]{4}}{2}$; local minimum $f\left(\frac{-\sqrt[3]{4}}{2}\right) = 9\sqrt[3]{16}$
- © c. Critical point: $-\sqrt[3]{4}$; local minimum $f\left(\frac{-\sqrt[3]{4}}{2}\right) = 21\sqrt[3]{16}$
- 🔘 d. No critical points; no local minima or maxima

15.(Points: 2)

Encuentre, si es posible, los valores maximos y mínimo de la función en el intervalo indicado.

$$F(x) = \sqrt[3]{x}$$
 on [-27, 27]

 $\sqrt[3]{x}$

- a. Maximum value F(27) = 3; minimum value $F(\sqrt[3]{-2}) = 0$
- \bigcirc b. Maximum value F(-27) = 3; minimum value F(0) =0
- c. Maximum value F(0) =0; minimum value F(27) = 3
- \odot d. Maximum value F(27) = 3; minimum value F(-27) = -3

Save Answer

16.(Points: 2)

ENcuentre el valor extremo de la función y donde occurren.

$$y = \frac{1}{\sqrt{1 - 5x^2}}$$

- \bigcirc a. The maximum is 1 at x = -2.
- \bigcirc b. The minimum is 1 at x = 0.
- \bigcirc c. The minimum is 0 at x = 1.
- \bigcirc d. The maximum is 1 at x = 2.

Save Answer

17.(Points: 2)

Use la derivada de f(x) provista para determinar el intervalo donde f(x) está creaciendo o decreciendo.

$$f'(x) = (7 - x)(8 - x)$$

- \bigcirc a. Decreasing on $(-\infty, -7)$ \cup $(-8, \infty)$; increasing on (-7, -8)
- \bigcirc b. Decreasing on $(-\infty, 7)$ \cup $(8, \infty)$; increasing on (7, 8)
- \bigcirc c. Decreasing on (7, 8); increasing on (- ∞ , 7) \cup (8, ∞)
- \bigcirc d. Decreasing on $(-\infty, 7)$; increasing on $(8, \infty)$

18.(Points: 2)

Determine dónde la función es concava hacia arriba y donde es concava hacia abajo. Además, encuentre todos sus puntos de inflexión.

$$G(w) = 4w^2 + 16w + 15$$

- \bigcirc a. Concave up on $(-\infty, -2)$, concave down on $(-2, \infty)$; inflection point (-2, -1)
- c. Concave up for all w; no inflection points
- d. Concave down for all w; no inflection points

Save Answer

19.(Points: 2)

Una compañía encuentra que su ganancia (utilidad) al producir unos artículos a un precio de **\$7.21** cada uno está dado por la fórmula:

$$G(x) = -1000 + 0.003x^2 - 10^{-6}x^3$$

¿Cuál es el **ingreso (R)** que se puede lograr al producir el número de artículos que maximize la ganancia (utilidad)?

Redondee su respuesta al dólar más cercano.

Answer

Save Answer

20.(Points: 2)

Se debe construir un tanque con una base cuadrada horizontal y lados rectángulares verticales. No tendrá tapa. El tanque necesita una capacidad de **4 metros cúbicos (m³)** de agua. El material con que se construirá el tanque tiene un costo de **\$5.97** por metro cuadrado. ¿Cuál es el **costo total del material (C) mínimo** que se puede lograr al seleccionar las dimensiones del

tanque apropiadas?

Redondee su respuesta al centavo más cercano.

Answer

Save Answer

21.(Points: 2)

Encuentre la antiderivada general F(x) + C de la función.

$$f(x) = 9\sqrt{x} - 2$$

$$\circ$$
 a. $9x^{3/2} - 2x + C$

b.
$$9x^{3/2} - 2 + C$$

$$\circ$$
 c. $6x^{3/2} - 2 + C$

$$\circ$$
 d. $6x^{3/2} - 2x + C$

Save Answer

22.(Points: 2)

Encuentre la integral indefinida de la función

$$\int \frac{x\sqrt{x} + \sqrt{x}}{x^2} \, dx$$

$$\bigcirc$$
 b. $\frac{2}{\sqrt{x}} - 2\sqrt{x} + C$

$$\bigcirc$$
 c. $-\frac{\sqrt{x}}{2} - \frac{3\sqrt{x}}{2} + C$

0 d.
$$2\sqrt{x} - \frac{2}{\sqrt{x}} + C$$

Save Answer

Evalúe el integral definido.

$$\int_{-6}^{3} (-2x + 6) \, dx$$

- a. 162
- o b. 81
- © c. 108
- 0 d. 27

Save Answer

24.(Points: 2)

Evalúe el integral

$$\int x^4 \sqrt{x^5 + 10} \, dx$$

$$\bigcirc$$
 a. $\frac{10}{3}(x^5 + 10)^{3/2} + C$

$$b. -\frac{2}{5}(x^5+10)^{-1/2}+C$$

$$\circ$$
 c. $\frac{2}{15}(x^5 + 10)^{3/2} + C$

O d.
$$\frac{2}{3}(x^5 + 10)^{3/2} + C$$

Save Answer

25.(Points: 2)

Evalúe el integral

$$\int \frac{7 \times ^6 dx}{(9 + x^7)^4}$$

$$\circ$$
 a. $-\frac{7x^6}{(9+x^7)^3} + C$

b.
$$-\frac{1}{5(9+x^7)^5} + C$$

$$\circ$$
 c. $-\frac{1}{3(9+x^7)^3} + C$

O d.
$$\frac{1}{5}$$
 (9 + x⁷)⁵ + C

Finish Save All Help